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Summary. In this paper we derive the log likelihoo®function '
for point processes in terms of their stochastic intensities,

using the martingale approach. For practical purposes we work

witbh an approximate log likelihood function which is shown to
possess the usual asymptotic properties of a 1og likelihood
function. The resulting estimates are strongly consistent and
asymptotically normal (under some regularity conditions}. As

a by-product, a strong law of large numbers and a central limit

theorem for continuous martingale are derived.
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1. Introduction. The maximum likelihood estimates for point

process model have been occasionally used especially for Poisson
model (see e.g. Snyder (1975)). The log likelihood function has
also been used in some cases in a somewhat heuristic manner (see
e.g. Snyder (1975), Vere-Jone(1975)). Although it is expected
that the maximum likelihood estimates possess the usual asymptotic
properties, to the best of our knowledge, there has not been a
rigorous proof for it. 1In this paper, we use some of the ideas
of Jacod (1975) and Lipster and Shiryayev (1978) on martingale
theory for point processes to derive the log likelihood function,
and we prove under some regularity conditions the asymptotic pro-
perties of the log likelihood and the maximum likelihood estima-
tors. The case of self exciting processes is of great interest
since the log likelihood can be written down easily and hence is

treated in greater detail.

2. The Log Likelihood Function for Point Process.

We shall be concerned with multitype point processes, that is,
point events of r different types randomly occurring along the
real line. This process can be described by a multivariate count-
ing process N(t) = {Nl(t)""'Nr(t)} , £t ¢ R, defined on some
probability space (Q,A,P). Here Nj(t) - Nj(s) , t > s denotes
the number of point events of type j which occur in (s,t} .

By convention Nj(O) = 0 . We shall suppose that at each t ,
at most one event regardless of its type can occur. Let At '
t 2 0 be an increasing family of sub-o fields such that N({(t)

is At»measurable, t >0 . Then (Lipster and Shiryayev (1977},




3.

p. 239) there is for each j =1,...,r a natural increasing
process Aj(t) » called the compensator of Nj(t) , relative
to (A.,P) such that mj(t) = Nj(t) - Aj(t) t>20 is a
At-local martingale. Here we shall be interested only in the
case where the measure dAj(t)dP admits a density Aj(t) with
respect to dtdP . The process Aj(t) can be chosen to be
At-predictable, that is (t,w) -~ kj(t,w) is measurable with
respect to the o¢-field generated by all the At-adapted,pro—
cesses with left continuous sample paths, and is called the
stochastic intensity of the N(t) process. Intuitively Aj(t)

can be interpreted as

(2.1) lim P{AN.(t) = llAt}/At
At+0 ]
where AN(t) = N(t + At) - N(t) . 1Indeed if Tg is the time of

occurrence of the n-th event of type j after the origin, then
mj(t A Tg) £t 2 0 1is a martingale and so for s > t , A ¢ At ’
3
n

dA, (u)}
. J )

J
n

s
= E[1. 1 . A (u) ldu .
Jc A g s Tg} J

Heuristically if s = t + At and At 1is small, then the left

S T
A

E{lﬁj.

tAT

j 3
(2.2) E[lA{Nj(sAtn) - Nj(tArn)}]

hand side of (2.2) is approximately P(A n {t < Tg} n {AN(t) = 1})
and the right Hand side of (2.2) is approximately

E[lA 1 A(t) JAt . Since {Tg < t} ¢ At , we obtain the

J
{t < 1}
interpretation (2.1). Historically (2.1) was proposed as the
definition of the stochastic intensity. This definition requires

the existence of the limit in (2.1) and is equivalent to our

RO




definition only under some regularity conditions.

It A=A

then the stochastic intensity, which we write now Aj(t) com-

the sub o-field generated by N(s) , 05 s < ¢t ,

pletely defines the probability distribution of the process (Jacod
(1975), Lipster and Shiryayev (1977), p. 252). Now let T be the
probability such that the Nj(t) » relative to 7 , are independent
Poisson processes with unit rate. Thus, relative to = , the stoch;

astic intensity of Nj(t) is one. Observe that the random

measure {j} x (s,t) > ft %j(u)du on {1l,...,r} x rRY is precisely
S
the dual predictable projection in the sense of Jacod (1975) of the

random measure {j} x (s,t) > Nj(t) - Nj(s) , by the result of
this paper, P is absolutely continuous with respect to T on any

AT , T >0 , with density

~

{Log Aj(t) dN(t) - Aj(t) dt + dt }]

-3
e~ R

0 j=1
Let now {Pe, 6 € 0} be a family of probability distributions on

(,A) and let A (t) Dbe the corresponding stochastic intensity

6,3
of the Nj(t) process. Then the above result shows that the log
likelihood function corresponding to an interval of observation [0,T]
is, up to an additive constant:
~ p T . ~

(2.3) L,(8) = é jzl {Log Ag j(t) dNj(£) - Ag s(t) at}
Remark

The multitype process is a special case of the marked point
process when the space of the marks is just {l,...,r} . There is
no difficulty to write down the log likelihood function for marked

point process. Also, it is not necessary to suppose the existence

of the stochastic intensity to write down the log likelihood func-
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tion; it suffices that the measure d/\6 j(t) dPe be absolutely
r

continuous with respect to some measure dv(t) dPe, A (t)

8,3
being the natural increasing process of Nj(t) relative to At

~

and to Pe . The special case we considered is convenient for
further developments concerning the asymptotic properties of the

log likelihood function.

3. The Approximate Log Likelihood Function

The considered process is defined on the whole line although only

an observation on [0,T] is available. Denote by Ae j(t) the
[4
stochastic intensity of the Nj(t) process relative to Py and

the sub g-fields A t ¢ R generated by N(s) , s < t . Models

t ’

of point processes are usually described in terms of

A (t) = (A (t),eeer (t)) . For example, the self exciting
] 8,1 6,r

process introduced by Hawkes (1972) can be defined by

t
(3.1) Ag(t) = a, + / gyt - s) dAN(s)
] 8 o 8
where ag is a constant vector and ge(.) is some appropriate

matrix function. Thus, it is desirable to obtain the log likeli-
hood function in terms of xe(t) . We are led to the problem of

computing ke(t) in terms of A, .{(t) . Now, from the interpret-

0,3
ation (2.1) of Ao j(t) one can expect that
’

~

xe’j(t) = Ee{xe,j(t)[At} in case when ), j(t) is integrable.

’

The rigorous result is

Theorem 1. Let Tg be the time of occurrence of the n-th event

of type Jj after the origin. Then for almost all t , the random




variable l{t < j} Ae At) is Pe—integrable and

Lig ¢ 13) 2g,5(8) = Bglly Tg}xe'j(t)|At]

almost surely.

From (2.2), we have for all s > 0

vy = S .
n > Ee{Nj(s A Tn)} é Ee[l{t < Tg}kelj(t)]dt
and hence the function

(t,w) ~» Xn(trw) = l{t < TJ} (w) >‘e’j(m)

n

belongs to Ll(R+ X Q,BR+ | A, dt dPy) . We shall show that
there exists a At—predictable process xn(t) with

Xn(t) = E{Xn(t)|At} for almost all t , almost surely. Indeed,

there exists a sequence of simple functions of the form

X (t,w) = ?k 20 () 10 L0 k=1, 2
o n,kor m=1 = (tm-l’tm ] o
which converges in L1 to X . For tﬁ?l <t < tgd , set

~

. (%) |
xn,k(t) to be a version of EB{Zm | t} , such that the process

in k(t) has left continuous sample path and is At_
’

adapted, which is possible because of the martingale property

(k) (k) ;
me1 < t = tm . Hence xn,k(t) is

~

(k) 3
of the Eglz l AT .t
xt—predictable.

From

(£) = Egix_(t)[A}] lEe[{Xn,k(t> - xn(t)}llt1|

|xn,k

A

Eotlx, (8) = X (&) [}




. 1
and the fact that Xn,k -+ Xn in L as k - o , we get that

-~

1

the sequence Xn X * k > 1 is a Cauchy sequence in L and
’

hence converges to some Zt—predictable process in which
equals Ee{xn(t)lxt} almost surely for almost all t .
i Now, from the definition of Xn(t) and the fact that

{t < Tg} € Rt + we have, almost surely

1{t < Trjx} Ee{xm(t) | Al = Ee{Xn(tHAt} for m > n

and hence there is a Kt-predictable process i(t) such that

X(t) = X (t) = E6[l

1{12 > t}) {3 > t3he,5 (8 | AL

for almost all t , almost surely.

We now show that i(t) is i .(t) . TFor this let A ¢ Rt '

€,3
then the right hand side of (2.2) is equal to

S S ~
E,l 1. X (u) 4 =
6 It a%n uj ft Egll, Eglx (w) | A, 1 ldu

s
jt Ee{lAXn(u)} du
SATg

Egil, It X(u) du}

t

Hence, by (2.2) the process N(t) —.% X{u) du, t 2 0 is a 1local

martingale, which gives the desired result.

Corollary. Suppose that . (t) 1is integrable for almost all

A
0,3

t . Then ke’j(t) = Ee{ke,j(t)lAt} almost surely, for almost all

t

Although the above result nrovides a means of computing )




in terms of Ae(t) , the actual computation is not easy. So

we are led to approximate Ag(t) by some ﬁe(t) which depend
only on N(s) , 0 < s < t . The approximate log likelihood
function is then

T r A
(3.27 Lg(8) =/ A Y Log A

A
o 31 'j(t) de(t) - Ae'j(t) at}

Since T-l iT(e) depends essentially on the values of
ie(t) for large t if T is large, we would expect that Lo
is a good approximation to iT for large T if ﬁe(t) is a
good approximation to Xe(t) for large t . But by the corol-
lary of Theorem 1 and the stationarity of N(t) ,

El| ie(t) - le(t)l[“> 0 as t » « . Therefore one could expect

~

that LT is good approximation to LT for large T 1if ie(t)
is a good approximation to Ae(t) for large t . We will make
our assumptions on Qe(t) precise later on.

As example, consider the self exciting process when Ae(t)
is given by (3.1). 1In order that Ae’j(t) >0 for all t , we
shall assume that ae,jl 2 0, ge,jl(t) z 0 for all t . 1If the
99,54 are integrable and N(t) is of stationary increments with

EN. (1) = Ug j < ®© , then the integral in (3.1) exists almost
’

surely. Indeed

E, {/tg . - = tq -
6 '/ 9p,q0(t - 8) dNg(S)} = f7gg g, (t = Shug ,ds
o
< pe'g [m ge,jz(t) dt < +«

and hence the integral in the above left hand side is finite almost

surely. As an approximation to xe(t) , one might consider

A t
(3.3) Ae(t) = ag + 6 go(t - s) dN(s)
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-~ 0

which is evidently At—measurable and would be a good approx-
imation to Ae(t) for large t if ge(t) - 0 sufficiently f

fast.

4. Asymptotic Properties of the Approximate Log Likelihood ,

From now on, we shall suppose that the N(t) process is of

stationary increments and metrically transitive in the sense of

l,...,wr)

where the &i are non-decreasing integral valued functions on

Doob (1953, p. 510). Let Q@ Dbe the space of W = (@

(~<,%) , A the o-field generated by the projections

~

T : 0 > o{t) - H(s) , s < t, Py the restriction to A of the

st
image of Pe by the application N : w > N{.) , and Th the
shift operator (Th&) (t) = &(t + h) . Then stationarity means

that T conserves the probability P that is

h o '
ﬁe(T-;A) =P(A) , YA ¢ A, and metric transitivity means that

the invariant sets, that is, those sets A ¢ A for which

T_iA = A , a.s., have probabilities zero or one. Now, from the

fact that ©N(t) - N(s) = Tse® N and that T conserves the prob-

h
ability Py, , one can show that g (£) = Xe(t)o N with
Te(t + h) = Xe(t) o T, . Hence if Ae(t) is integrable
1 T
lim = [ Ay(t) dt = EDx (0)}
T 0

almost surely. (see Doob, 1953, p. 515). Here the expectation is
computed with respect to the true probability

k A
We suppose in the sequel that 0 < R and ke(t) , AO(t)
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are twice continuously differentiable with respect to 6

’ xéZ)
denote the vector and the matrix of first and second deriv-

f

almost surely. We shall use the notation xél) to

atives of x

of the A, .(t) , Aél%(t) , 1 =1,2 such that y(t) is
r

8,3
integrable. Then by the same argument as above

1 T
(4.1) f-[ y(t)dt » Ep(0) , a.s. (T » =)
0

6 with respect to 6 . Let y(t) be a function

In this section, we are interested in the limiting beha-

vior of LT(e) ' Lél)(e*) » 1=1,2 as T » «» , f* being
the true value of 6 . We have, omitting the subscript 6

A A
when ©6 = 6* and putting ¢e j(t) = Log A (t) ,
’

8,3
dmj = de(t) - Aj(t)dt:
r (T, T A
(4.2) LT(S) = jzl {IO ¢e,j(t)det) -.IO Aelj(t)dt}
r T A
= jzl 1], %e,5(B2dns ()

T A
+I0{¢9J<mxjw)-%(u}du

(4.3) Lél)(e)

r T T
R $élg(t)de(t) - j &élg(t)dt}
j=l 0 ’ 0 r

T A (1)

r
= A Al - . (t
jzl , fo,5 (B 05® R 5(0))at

6,

TA
(1)
+1 695 (6)1dm, (2)]
IO 8,3y




(4.4) Li? (o) = jil{ :: $é?;(t)de(t) - IZ i‘éf%(t)dt}
- jzl[ 'z Qéfg(t){xj(t) - ﬁe’j(t) }at
. Z 0¢2) (tramy (v)
- Z se1od (0178, (eratl

In order to use the result (4.1) we are led to replace

A

A
)‘e,j(t) ' ¢e,j(t)"" by Xe'j(t) ' ¢e,j(t) = log Xe,j(t)"" .

The following result, which can be easily proved, is quite useful.

X be such that ¢,/x, + 0 as t + « , Also

Lemma 1. Let Et’ £ e/ *¢ as

T T
let 'I letldu(t) < o and u(r)~t I |xt|du(t) be bounded where
0 0

is a non-decreasing function with u(x) = « ., Then

_1 T
ul{T) .[ g, du(t) » 0 as T »> =« ,
0 t —

To obtain convergence results for the stochastic integrals
with respect to dmj(t) in (4.2) - (4.4), we will need the follow-
ing result which is of independent interest.

Lemma 2. Let M t 2 0 be a locally square integrable martin-

t 14
gale with continuous natural increasing process <M>t . Let 9y

t > 0 be a non-decreasing left continuous function with g_ = =,

such that <M>t = o(gi_e) , € >0 , almost surely as t + « ,

Then MT/gT + 0 almost surely as T > « ,




Let a > 0 be such that 95 > 0 . Let ¢ be an arbi-

trary positive constant. Define the stopping time

t
1 = Inf {t : ] g;Z d <M>_ > c}

" MtAT , and
t -1 .~ taTr -1
Zy =L 95 Mg = [ 9g dMg

The process Zys t > a 1is a martingale with natural increasing
process

tAT -2

<z>t = é I d<M>s <c, t=z2a

Since Ezi < ¢, t=>a, we know (Doob, 1953, p. 354, 361) that
almost surely Zop v 2yl 0 2y t>a, 2, exist and Z, is

bounded on any finite interval. Set tik) = a+ (T - a) i/k and

write
]ZC } { }
9p Zp = L U9 4y “9 9t 2 o) Y9 k) 2 k) "2 ()]
Y Y Y
T
(k) T (k)
0 t t a t t
(k) _ (k) _ (k) (k)
where Z, = Zt(k)’ I = gtgki for ti—l <t < ti .
i i-

By the Lebesque dominated convergence Theorem and the proper-

ty of stochastic integral, almost surely as k + «

T- T~
(k)
é Zt dgt - [ y/ dg

a t+ t




and T X T T 5 5
-> - - -
Iagt dzt I 9. dZt = I th = M, Ma

a a
Therefore
“lm. -M) =3, - gt }r—z 4
Ip (M a T~ 9p 4 e+ 99
=z - (1 “1y 4 -1 T—<z -2 d
T 9a9p / %w - 9p tr T 2w d9¢

Since Iy 4 » ags T » o , from Lemma 1 , we get g,;,l(MT - Ma) > 0
and hence g;lﬂi + 0 , almost surely as T + « .

Now, we have Mt = Mt for all t on the set

Since ¢ 1is arbitrary, we obtain g;IMT + 0 almost surely as
T - » on the set
)
{I 9. d<M>S< o}
a
2-¢
By assumption <M>s < const. 9g , for all s =2 b , for some

b > a , almost surely. So

) 9-2 d<M>_ < const ca<M> "2/ (2me)
jb s s ~ : 'ﬁ) s d<M>s
™ -2/ (2-¢)
= const. £M>b X dx < o

since the image of tle measure d<M>S by the application

s -+ <M>s is just the Lebesque measure. Hence, almost surely

o =2
Iagsd<M>s<oo,

since g;Z is bounded on [a,b] . The proof is completed.

< IR il S e -

BRI




Theorem 2.

Suppose that

(1)

for some

independent of t by stationarity) and ﬁe j(t)
14

2 1) (¢ -
Xg 3

t » o,

Ag%(t) »1=1,2 tend to zero almost surely as
[

(ii)

is integrable, and ¢6 j(t)
I

elements of ¢

are square integrable with

respect to the measure Aj(t)dP‘.

Then almost surely as

T-l

Lp(8) > Bl T 0 5(00A,(0) = Ay ,(0)] = A(8)

1 L,{,l) (8%) > 0

1 L£2)(e*) > -E{

II-M H

(1) (1) [y
957" (01457 (0)'64(0)

Consider the right hand side of (4.2).

A

A
¢e'3(t))\j(t) - A ,j(t) = q)e'j(t))\ ,j(t) + o(t)

where in this proof of(t)

denotes a quantity tending to zero

almost surely as

By lemma 1 and the fact that

¢e'-(t)lj(t)

3

is integrable since ¢e j(t)(Aj(t)) is square
’

times the last term

integrable, we obtain from (4.1) that T-1

of the extreme right hand side of (4.2) tends to

is a martingale

surely as T + « , On the other hand, mj(t)

with natural increasing process given by d<mj>

Therefore

Al .
J(t)dt




M, =jt$e

(t X
3t T g J( ) dmj(t)

’

is also a martingale with natural increasing process
2
<M.> = () AL(t)dt
”e g* 85 516 A0t

. If <Mj>t = O(t) almost surely as t + « , then by lemma 2,

Mj T/T + 0 and hence T"1 LT(e) + A(6) almost surely as
’

T + o , Since from (i)

A2 _ 2
85,4 (BA500) = 0g J(E1AS(8) + ¢y S(E)A(B)O(E)+ A (E)o(E)

and therefore by (4.1) and Lemma 1, Mj T/T > E{¢g j(O)Aj(O)}
14 ’

almost surely as T * » , we obtain the result
The proof for the convergence of T-lLél)(e*) and
“! (p*) wuses the same idea. We have from (i)

A

1) _
85 Ay (0) ﬁj<t)

i (&) + ¢§1’(t)o(t) + o(t) Jo(t)

¢§1’(t)o(t) + o(t)

A

) _ A A
$@ w0y m - A

2) A - M1) A (1) '
{Aj (t)/xj(t) 5 (t)¢j (t) '}o(t)

{¢§2’(t) + x;z)(t)o(t) + ¢§1’(t)o<t)

+ ¢;1)(t)¢§1)(t)'o(t) + o(t) Jo(t)

¢(12)(t)o(t) + ngz) (to(t) + ¢J§1) (t)o(t) + o(t)

Since Aj(t) is bounded below, from (ii), ¢§1)(t) ' A;l)(t) '
i =1,2 are integrable. By lemma 1 and (4.1), the first term

of the extreme right hand side of (4.3), (4.4), divided by T




le. '

tend to zero as T + = .,

Finally by a similar argument as above, the second terms
in the extreme right hand side of (4.3) and (4.4) are T o(T) and
the last term in the right hand side of (4.4) divided by T

converge to -J almost surely as T - « ., The proof is com-

NI b A9, DO AT A e T

pleted.

Remark

Condition (i) of the theorem is introduced for convenience.
The result might hold under weaker conditions. 1In fact, it

suffices that

LT B0 - e, LT O
TIO 3 3 ’ E]o 9g,5(B) = ¢g y(B)IA (R)AE,

T . |
1 A (1) _ o .
Tfo ¢)J (t){xj(t) )\j(t)}dt , 1 1,2,

T A A A
1 (1) (1) .y - _ (D (1) (-
Tfo {cbj (t) ¢4 (t) Aj(t) ¢ (1:)<pj (t) }\j(t)}dt

tend to zero almost surely as T + « and
T T
1 A2 1 A (1) 2 .
= . r.(v)ar , = . (t)yde , =1,2
TIO 82 00 (® 'TIO‘MJ )% oae , 1

are bounded almost surely, and condition (ii)} to obtain the result.
Condition (i) is also not very restrictive. 1In case of the

self-exciting process (3.1) with 9 3k 2 0 , then *e (t) is

)3

bounded below by a Oq 5 which we assume to be strictly positive.
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If we also assume that

§e(t) = sup||gg(t + h ||
h20

is integrable, then




A 0 r
A (B) = (e < const.Jf g (t - s) dN(s)
g o (B ey te -l 1

0 r
< const.f g, (t - s) ¥ aN(s)
—~ O j=1

where the last integral is almost surely finite since it has
a finite expectation and converges to zero as t » «» by the
monotonous convergence Theorem. In the same way, if ge(t)
is twice differentiable with respect to 8 with derivatives
satisfying the same condition as ge(t) as above, then
”ﬁéf%(t) - Aéf%(t)” , 1=1,2 , tend to zero almost surely as
t > © .,

Consider now the asymptotic distribution of o L (6%) .
From (4.3), we expect that the above is asymptotically distributed

like

T r
(4.5) Zo = T"’f 76 (tyam, (1)
0 j=1J J
The asymptotic distribution of ZT can be obtained from

the following result, which is of independent interest.

Lemma 3. Let Mt,At,t 2 0 be a square integrable martingale

with natural increasing process <Mt> satisfying d<M>t = Xtdt .

Suppose that there is a semi group of shift operator Ts's 20,

conserving the probability and metrically transitive, such that

-1 _ _ _ _
Ty, At = At+h ’ (Mt Mgo T, = M M

t+h s+h * Then as T =+ « ,

T-!’MT is asymptotically normal with zero mean and variance Exo .

Let n, be integers such that AT =T/n, > 0 as T e,




18.

Set

Y . =77k (M

T,J - M(

AT 5-1) a7’

Then from the result of Durett and Resnick (1978), as T + =

B
-k = m—%
T My, T Mo + jZl YT’j

is asymptotically normal with zero mean and variance EX

0'
provided
n, ,
(i) .Zl E{YT,j IA(j-l)AT} > EX, in probability
J=
n
id {T' E[Y2 . 1,,2 1+ 0 € >0
(ii) ’ .
o1 T,J {YT,j > e}

To verify (i), observe that the sum in (i) is equal to

T T
1 (T L, _ 1 (T) _
T IO Xt dt = <M>T/T + T IO (Xt Xt) dt

() _ . .
where X °' = E(Xt|AjAT) for jA, < t < (j + 1) A, . Clearly

xt+h = xto Th and E(xt+h\As+h) = E(xt]As)oTh . Therefore, as

A, ~ 0,

T

% (T)
sup E|X - X | = sup E[E(X,|A_) =-X,] +0
O<t<T t t 0<u<AT 17 1-u 1

Note that xt is At-measurable because this process is predic-

table. Thus, the sum in (i) differs from <M>T/T by a term
tending to 0 in the mean and since <M>T/T - Exo by the metric

transitivity of Ty, +» we obtain the result.

To verify (ii), observe that the YT 3 3 =1,...,n have
’

T

the same distribution. Put £(t) = M: - M0  we are led to verify

that:

-§ G ARRET S~ o

j:cnrw.ny. 1

R T




2 -1
nT[E(YT,l 1 2 l= AT ELE(A

) 1 1
F . {YT,l > E} T {E(AT) > ET}

tend to zero as T * ® ., This is true if AT +> 0 sufficiently
} slow. 1Indeed, £&(A) , 0 < A < 1 being a positive sub-martingale

is uniformly integrable (Doob, 1953, p. 359), that is:

= CE (A 1 - .
a(m = Sup ELEA) Ligay > ep}’ 70

as T > «® , 8o all we have to do is to choose nT such that

Ot(T)/AT +0 as T > » ,
We now show that the difference between T LT(G*) and

ZT , defined by (4.3), (4.5) tend to zero in probability as

T-)oo

Lemma 4. Let M t 2 0 be a locally integrable martingale

tl
with continuous natural increasing process <M>t . Let ht 20,

if <M>T/h% * 0 in probability as T * © , then so is MT/hT

Proof
Let € > 0 . Define the stopping time Ot to be the value
of s such that <M>s = Ehi . Then as T * *® ,

P{MTAOT # MT} > 0

since P{oT < 7T} = P{<M>T 2 sh%} - 0 . On the otherhand

2 2
E(M A ) = E<M? A s E<M> = €h
T OT T OT OT T

and hence by Tchebycheff inequality

PUiMp/by| > 83 < PlMy # M) ¢ e/s?
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s

i from which the result follows.

i1 KPP A

Theorem 3. Under the condition of Theorem 2 and suppose that

T A
(i) T"’J'O ¢;1’ (&) {4, (8) - 2y (B))aE > 0

e DOTRCRS T

in probability as T > « . Then % L, (6*) is asymptotically

¢
3
%

normal with zero-mean and covariance matrix J given in Theorem 2.

Let o be a vector and Z2,, be given by (4.5). Then

T
M, = Tt a'ZT , T =20 is a martingale with natural increasing

process

t r
-, (1) 2
<M> = Y {a¢:7" (s)} “X.(s)ds
t Io =1 J )

since (Lipster and Shiryayev, 1977, p. 269)

w2 =[5 v am 5 o(am)?
t Jo s= s s<t s
pt r ,
- m__am_+ ) {ao'P(e) P an. (s
Jo =1 3 ]
“Jo Lomg_amg + jzl{a 657 (8))7 dmglsh ¥ <y

where the first term of the last expression is a martingale and
the second is a natural process. By Lemma 3, a‘zT is asympto-
tically normal with zero mean and variance o°Ja . On the other

hand, by (i) and Lemma 4 with

L5 M) gy L (D) N
am, Ij a {¢j (t) ¢j (t)}dmj(t) , hy t , we see that

T‘ahél)(e*) - zT + 0 in probability as T + «® . The result

follows.




h ) SPTP—— - - -

Remark

Condition (i) of Theorem 3 is satisfied if, for example,

Eu&?;l’ (t)]]2 is bounded and
(4.6) J (E|AL (8) = AL (8) [ 23" de < 4o
0 J J

since by Schwartz inequality, the first absolute moment of the

expression in (i) is bounded by
5 T M) 2 g 2,%
T I {(Hle." (O ° E[x,(t) - A, (£) [T} 4t
0 J J J

A
In case of the self exciting process with Aj(t) ' Aj(t)

given by (3.1), (3.3) we have

i}
ko B Y o

0
ﬁj(t) - Aj(t) j: 9ik(t - s)de(s)

]

0 0
{J[ gjk(t - s) A, (s)ds tj:m gjk(t - s)dmk(s)}

[

Denote by H’Hz the L2 norm, by the triangular inequality

A 0
Ryeer = agewlly = L[ lagte = alin (ol as

+ [} - (t - s) E{),(s)}ds]?
¢ . 9 k

Note that as in the proof of Theorem 3, the martingale Ms
defined by dMs = Zkgjk(t - s)dmk(s) has the natural increasing
process given by d<M>_ = Zk ggk(t - s)lk(s) ds . Therefore,

the process Ak(t) being stationary

13 \ollae
jo j(t) - jt) 2

< const. L lg., (s) lds + {f g“., (s)dsl}?ldt
Eﬁjt ik ¢ Jk




Observe that

(4.7 . ds < .
) jo Itlgjk(s)l s <Io t|gjk(t) |at

and, by Schwartz inequality, for any positive function h on

(0,) which integrates to one

I {I g;k(s)ds}%dt {I h(t)‘[ gj%k(s)ds dt};5
0 t

=IO (tal, (t)/n(e) bat

-l-a

Take h(t) ~ t r & >0 . Then (4.6) holds if the right hand
[¢o]

size of (4.7) and J. x(t)dt are finite. 1In the same way

one can show that |4} (l)(t) - Agl)(tﬂlz + 0 as t +» «» if the

(l)(t) are integrable and square integrable. Hence EH¢§1)(tH|2

are bounded if the above conditions hold and Aj(t) are bounded

below. Thus condition (i) of the Theorem is not restrictive.

5. Asymptotic Properties of the Maximum Likelihood Estimator

We are interested in the asymptotic properties of the esti-
mate aT , which maximize LT in © . We shall use this general

result for which the proof is quite standard.

k
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Theorem 4. 1. Let AT be a random function on 0O < R

satisfying

(i) AT(B) + A(0®) almost surely as T +» « , with A being

continuous, admitting a unigue maximum 6*

(ii) For any 6 # 8%




lim sup Sup {AT(G‘) - AT(B)} +> 0 a.s.
T+ 8~ eU{R)

as the neighborhood u(8) of 6 shrinks to 6 .

Then any 6 realising the maximum of AT on a compact

T
C 2£ © containing 6* , converges almost surely to 6* as

T - o,

2. Suppose that 6* is an interior point of 0 and A admits

continuous first and second derivatives with respect to 6 ,
(1) (2)

AT AT
(2)
AT

denoted by the vector and the matrix , satisfying

(iii) As T + o , (8*) - -3 1in probability and

VT Aél)(e) is asymptotically normal with zero mean and covariance

matrix J .
{iv) For every ¢ > 0
lim inf P{[A 2 (0) - alP (%)) < € , voeu(o)
T >0

increases to 1 as the neighborhood U(6*) of 6* shrinks to

e* .

A
Then § of 1) is asymptotically normal with mean 6* and

T

covariance matrix T L g1 . Moreover, if ¢ is T%
vhrTeVVEIr =2 Y 22

that is the distributions of V'T (eT - 6*) are tight, then

A (2)
Op = {BT = Ap

~consistent,

(BT)-lAél)(eT)} + 0 in probability as T » « ,

We apply the above results with A, = T'lLT . By Theorem 2,
condition (i) is satisfied except the continuity of A(6) , which
we shall assume. To see that 6* realises the maximum of A(9) ,

write

r
-1 .
- = . . X, : - Ay 4 (0)]
A(8) - A(E*) j££E Log{dg ;(0)A47(0) 1A (0) + A (0) 5,30
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and note that log x € x - 1 with equality if and only if

x =1, we get A(B) =< A(6*) with equality if and only if

A, 2(0) = Aj(o) almost surely, implying, by stationarity

6,3
Ae j(t) = Aj(t) almost surely. If the parametrization is
’
such that for 6 # 6 , A, .(t) 1is not equal to A .(t)
,3 8,3

for all t , almost surely, then 6* is the unigque maximum
of A .

Theorems 2 and 3 show that condition (iii) is satisfied.
So all we need is to verify conditions (ii) and (iv). This
would require rather strong assumptions on Ae(t) and Ae(t).

A sufficient set of assumptions is

AO: For any compact C of © , there isa c > 0

such that X, .(t) 2¢ almost surely for all

Vol

all 8 € C .

Al: For any compact C of @ ~

A
lim Sup |A

At) = X, (B)] =0 a.s.
tsw §eC .3

8,3

2
E {Sup ¢, .(£)Ir.(t) <
pec 93 J

A2: For some compact neighborhood U of 6*

ANy .
lim Suplixéll(t) - Aélz(tnl =0 a.s., i=1,2,
t_,m eEU 14 J ’ J

2

’

2

2
E[{Supl|¢( l(tH! FoaL(e)l < «
peu 03 ]

8

E{Supl\kézl(tﬂl} <
eeu rJ

Theorem 8. Under the assumptions A0, Al condition (ii)
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Theorem 4 is satisfied, and under the assumptions A0, A2,

condition (iv) of Theorem 4 is satisfied.

Let U(6) be a compact neighborhood of 6
(4.2),

. Then from

-1 -1 r T A
Sup T "L,(8°) < T X[I{ Sup ¢

.(£) }JaN. ()
9" €U () 321 J 0 67€u(0) J

7,3
A

T
- { 1Inf xe () rae) .
0 ¢ eu(e) °’

By the same argument as in the proof of Theorem 2, the above
right hand side is seen to converge almost surely as T + «» to

r
(EC{ Sup ¢,. (£)Ir.(£)] - E{ Inf A_ .(t)}]
R LIS ] 6-cu(e) °3

By the monotonous convergence theorem, as U(8) shrinks to ©
the above expression converges to A(8) and hence
lim sup { Sup T 'L, (87)} > A(8) a.s. ,
T->oo 87U (0)
which gives the result.
To verify condition (iv) of Theorem 4, from (4.4) observe

that T-llLéz)(e) - Léz)(e*)l is bounded for all 6 ¢ U by

-1 " (2) (2)
T [ {sup || ¢ (£) = .77 (£)|]|}aN., (t)
j——zl 0 6€U 14g, 3 J IF3an,

T A
+‘I sup 1320 - (2 (0] 1aes
o ey YrI ]

Again, by a similar argument, the above expression converges

almost surely as T =+ © to

— e 2T

ppyr -~




r
I E supllef2ey - ¢! (ol ()
j=1 BeU rJ 3 3
(2)

+ E{Sup]| Aé?;(t) -2y (t) ||}

6e€U

Note that we have used the fact that

{sup 1682 (t) - o (0)]IVA, () , Sup ||A, .(£) - AL (%)
sup (162} (6 = 65 @IV, sup llag 5(e) = ol

are square integrable and integrable which follows easily from

A2, Again, by the monotonous convergence Theorem, the above

expectations converge to zero as U shrinks to 6* . The proof

is completed.
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